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1. 

Acoustic wave propagation through a flow in an infinite duct is a subject that has lately
received renewed attention in connection with the design and understanding of the noise
characteristics of ducted fan engines. Noise is generated inside the engine by various flow
related mechanisms such as rotor wake–stator interaction, and it propagates from its
source through the inlet and exhaust ducts. Of course, the ducts of all engines are finite
in length, and they are generally of non-uniform cross-sectional area. Nevertheless, the
study of acoustic wave propagation in infinite ducts of uniform circular or annular shapes
has been very useful to engine designers interested in obtaining practical qualitative and
quantitative information. Perhaps the most basic paper on infinite duct acoustic wave
propagation is that of Tyler and Sofrin [1]. Many useful results are found in this paper
and elsewhere on infinite duct propagation that one must understand in order to explain
various aspects of engine noise, even though acoustic analyses of real engines carrying
non-uniform flows in finite ducts are considerably more complicated [2, 3].

In this letter we give a graphical representation applicable to wave propagation in an
infinite duct carrying a uniformly moving fluid. The representation was first presented by
the authors in reference [4]. The graphical approach is easily implemented on a personal
computer, and it can be especially useful for those new to the area of duct acoustics. We
show that many known results can be derived easily using the graphical method. It involves
construction of an ellipse in wavenumber space, the shape of which is dependent only on
flow speed. The propagating waves as well as the upstream and downstream wave number
vectors are then obtained graphically. In addition, the direction of energy propagation,
the mode cut-off concept and the approximate radiation angle for each mode can all be
illustrated by graphical construction.

2.           fl

Consider a duct of uniform circular or annular cross-section carrying a uniform flow
at Mach number MQ 1. The differential equation and the boundary condition for
propagation of small pressure perturbations for the hard wall case is
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in which x is the axial co-ordinate along the duct. If cylindrical polar co-ordinates (r, u, x)
are used, and if it is assumed that a complex solution for the acoustic pressure p' exists
in the form

p'=P(r, u, x) eivt (2)

then the complex amplitude P satisfies the equations

(1−M2)
12P
1x2 +92

2P−2ikM
1P
1x

+ k2P=0,
1P
1r

=0 (on the wall), (3a, b)

in which k=v/c0 and 92
2 is the two-dimensional Laplacian in polar co-ordinates.

Let ka (m, n) and kr (m, n) be the axial and radial wavenumbers for the mth
circumferential and nth radial mode. Now considering a circular duct of radius R, the
solution of equation (1) for the mode (m, n) is

p'=AmnJm [kr (m, n)r] exp i[vt−mu− ka (m, n)x], (4)

where the kr (m, n) are obtained as the roots of

J'm [kr (m, n)R]=0, (5)

numbered in consecutive order by n=1, 2, 3, . . . . Here Jm ( · ) is a Bessel function of the
first kind of order m. Let b2 =1−M2. Then ka (m, n) is given from equations (3) and (4)
by

ka (m, n)= (k/b2)[−M2z1− [bkr (m, n)/k]2]= (k/b2)[−M2z1−1/b2
mn], (6)

in which m=0, 1, 2, . . . . We have defined the cut-off ratio bmn as

bmn = k/bkr (m, n). (7)

It then follows that the mode (m, n) is propagating if bmn q 1 and decaying if bmn Q 1.
In preparation for the graphical approach, we write equation (6) as

(k	 1 +M/b2)2

1/b4 +
k	 2

2

1/b2 =1, (8)

where k	 1 = ka /k and k	 2 = kr /k. For use later, we note that equation (8) can also be
expressed as

k	 2
1 + k	 2

2 = (1−Mk	 1)2. (9)

Equation (8) is an ellipse in the variables (k	 1, k	 2) with center at (−M/b2, 0) and with
semi-major and semi-minor axes 1/b2 and 1/b, respectively. The ellipse depends only on
M. It intersects the k	 1-axis at k	 1 =1/(1+M)q 0 and k	 1 =−1/(1−M)Q 0. It always
intersects the k	 2-axis at k	 2 =21. In Figure 1 is shown the ellipse described by equation
(8) for flow Mach number M=0·8. Note that, for M=0, equation (8) gives a circle of
unit radius in the k	 1k	 2-plane with its center at the origin. We now use this ellipse to study
some aspects of wave propagation in a circular duct.

2.1. Propagating and decaying modes
In Figure 2 it is shown how one determines the propagating and decaying modes. On

different vertical axes, each corresponding to a circumferential mode m, plot the solutions
of equation (5); i.e., kr (m, n)/k for n=1, 2, . . . . Draw horizontal lines as shown in this
figure for m=0. If these lines intersect the ellipse, the mode (m, n) is a propagating mode.
Otherwise, the mode is decaying. In general, we obtain two values for ka , which we denote
as ka+ and ka−. In Figure 2 we have shown ka+(0, 3)/k and ka−(0, 3)/k. Note that ka
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Figure 1. The ellipse of the wavenumber vector described by equation (8); k	 1 = ka /k, k	 2 = kr /k, M=0·8.
Corresponding to each propagating wave with a given k	 2, two axial wavenumbers k	 1+ and k	 1− are obtained.

determines the axial phase speed of the mode (m, n). The ka+ mode is generally called the
downstream mode, but any propagating ka+ mode for which kr /kq 1 actually moves in
the negative x direction; this is the case with ka+(0, 3) in Figure 2. The relationship of the
phase speed of the mode to the velocity of energy propagation in the mode will be discussed
below.

2.2. Mode cut-off and energy flow
When the cut-off ratio bmn is equal to unity, k	 2 =1/b. Since the semi-minor axis of the

ellipse in the k	 1k	 2-plane is 1/b, the axial wave number corresponding to k	 2 =1/b is
k	 1 = ka /k=−M/b2. The wavenumber vector for the cut-off condition at M=0·8 is shown
in Figure 3. It indicates that the ka+ wave propagates upstream. To discover what is special
about the wavenumber vector at cut-off, we consider the acoustic energy flux vector for
the modal solution given by equation (4).

Figure 2. The determination of propagating and decaying waves. Each vertical line on the right corresponds
to the circumferential mode. M=0·8. E, Propagating; ×, decaying.

Figure 3. The wavenumber vector at cut-off, M=0·8.
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For isentropic disturbances in a uniform flow at velocity V, the acoustic energy flux
vector can be written as [5]

W=(p'+ r0V · u')0u'+
p'

r0c2
0
V1=(p'+ r0c0M · u')0u'+

p'
r0c0

M1. (10)

In equation (10), u' is the acoustic particle velocity corresponding p', r0 is the density
of the undisturbed flow, and M is the flow Mach number vector V/c0. The (primed)
disturbance quantities are the actual (real) acoustic pressure and velocity. For an acoustic
field represented in the complex form of equation (4), the linearized momentum equation
gives

u'=
−9p'

ir0c0k(1−Mk	 1)
=

k	 1p'

r0c0(1−Mk	 1)
e1 + u'2, (11)

in which e1 is the unit vector along the x direction and u'2 is the projection of u' on the
cross-sectional plane of the duct. Thus, for the single-mode complex solution given by
equation (4), we have

W=Re $ p'
1−Mk	 1% · Re $ b2k	 1 +M

r0c0(1−Mk	 1)
p'e1 + u'2%. (12)

Here Re [ · ] denotes the real part of [ · ]. We see from equation (12) that at the cut-off
condition, k	 1 =−M/b2, the axial component of the acoustic energy flux vanishes: W is
normal to the wall and no energy propagates along the duct axis. Equation (12) also shows
that the modal intensity, which is the time-average of W, will have an axial component
proportional to (b2k	 1 +M) =p'=2. This is positive for all k	 1 q−M/b2. Hence, a mode such
as ka+(0, 3) in Figure 2 always carries power in the positive x direction even though its
axial phase speed is negative.

The cut-off of axial energy flux can also be exhibited graphically on the wavenumber
ellipse, although only approximately for a circular duct (the interpretation is exact for
ducts of rectangular cross-section). For this purpose we use the large argument
approximation of the Bessel function,

Jm (krr)1X 2
pkrr

cos (krr−cm ), (13)

with cm = p/4+mp/2 to approximate p' by

p'1Amn

2 X 2
pkrr

{exp i[vt−mu− kax− krr−cm ]

+ exp i[vt−mu− kax+ krr+cm ]}. (14)

We see that, for sufficiently large krr at any fixed u, p' can be considered to be the sum
of two progressing waves in (x, r), the phases of which are

f2 =vt− kax3 krr= k(c0t− k	 1x3 k	 2r). (15)

The unit vectors normal to these planar phase surfaces are n2 =−9f2/=9f2 = , or

n2 =
(k	 1, 2k	 2)

zk	 21 + k	 22
=

(k	 1, 2k	 2)
p1−Mk	 1

, (16)
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where we have used equation (9). Now if we invert equation (16) to express the
wavenumber vector k2 =(k	 1, 2k	 2) in terms of n2, we obtain

k2 = n2/(1+M · n2). (17)

If we use equation (17) in equation (15) we find that

f2 =vt−
kn2 · r

1+M · n2
, (18)

where r is the position vector (x, r) in the plane of constant u. The phases in equation (18)
are precisely those of a pure plane wave propagating in the directions n2 in the x–r plane.
The phase speeds of these waves are, from equation (18), c0(1+M · n2).

If the approximation is viewed locally and variations in the geometric factor r−1/2 are
ignored, then equation (14) implies that at points sufficiently close to the duct wall at least
the higher order n modes can be interpreted as being a sum of two interfering plane waves
propagating in the directions n2. For each of these separately, the relation u'= p'n/r0c0

holds so that the energy flux associated with each is given from equation (10) by

W=
p'2

r0c2
0
(1+M · n)(c0n+V). (19)

The last factor in equation (19) is the energy propagation velocity, or the group velocity
VG , of the plane wave:

VG = c0n+V= c0(n+M), (20)

and it is this quantity associated with the approximate plane wave representation of the
duct modes that is convenient to consider in conjunction with the wavenumber ellipse.

If we again refer to Figure 3, we see that at cut-off the component of VG in the x direction
is

VG · e1 = c0(−cos uc +M)= c0(−M+M)=0. (21)

Here we have used the fact that, as seen from Figure 3, tan uc = b/M and thus cos uc =M,
where uc is the angle that k	 at the cut-off condition makes with the k	 1-axis. Equation (21)
means that the acoustic energy flux vector is normal to the wall and no energy is
propagated along the axis.

To find the direction of group velocity in our graphical construction, follow the vector
diagram of Figure 4. This diagram is in the k	 1k	 2-plane, so that M must be scaled up to
M/b2 to obtain the direction of the group velocity as shown in this plane. From the figure,
it is clear that at the cut-off condition the group velocity points upward, and thus the
energy flux vector is normal to the wall.

Figure 4. The diagram for finding the direction of group velocity in the k	 1k	 2-plane.
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Figure 5. The diagram for construction of u', the angle of the main radiation lobe from an inlet, as proposed
by Rice et al. [6]. The ellipse is based on the duct Mach number (M=0·8) and the flight Mach number is Ma.

2.3. The angle of the main lobe of radiation from an inlet
Rice, et al. [6] have proposed a rule for finding the angle of the main lobe of radiation

from an inlet where the duct Mach number is M and the inflow Mach number (flight speed)
is Ma. By our graphical method we can give a simple interpretation of their rule as follows.
Intuitively, it is obvious that the phase velocity of a radiating mode at the inlet should
be based on M, the duct flow Mach number. However, the angle of the main lobe of
radiation is in the direction of the group velocity using Ma instead of M in Figure 4. This
construction is shown in Figure 5. Here u' is the sought angle. The mathematical reasoning
is as follows. Remembering that k	 1 Q 0, we have, from Figure 5,

tan u'=
k	 2

k	 1 +Ma/b2
=

b

= (Ma −M)bmn −zb2
mn −1 =

, (22)

where bmn is the cut-off ratio. This is equivalent to the expression that Rice et al. [6] gave
for cos u'.

2.4. Other results
One can easily show graphically some other known results. One is the following: if a

mode (m, n) propagates for M=M1, then it will propagate for duct Mach
number M2 qM1. The proof is simple. From Figure 6 the semi-minor axis of the ellipse
for M2 is 1/b2, where b2 =z1−M2

2 Q b1 =z1−M2
1. Therefore, 1/b2 q 1/b1 is the

semi-minor axis of the ellipse for M1. Hence, a horizontal line that intersects the ellipse
for M=M1 necessarily intersects the ellipse for M=M2 (see Figure 6).

Figure 6. The ellipses for M=0·6 and M=0·7. Mode (m, n) propagates for M=0·6. Therefore, it propagates
for Mq 0·6.
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Figure 7. The degenerate ellipse (a parabola) as M:1. Note that as k	 1:−a, we have k	 2:2a. Any
horizontal line intersects the parabola; i.e., all modes propagate.

Another result is that as M:1 all modes will propagate. Again, the graphical proof is
very simple. As M:1, b:0 and the equation of the ellipse degenerates into the parabola

k	 2
2 =1−2k	 1. (23)

The axis of this parabola is the k	 1-axis and the parabola intersects the k	 1-axis at k	 1 =1/2.
The parabola extends to infinity in the k	 2 direction, so that any horizontal line intersects
it (see Figure 7). This means, by our graphical method of discovering propagating modes,
that all modes propagate.

We mention here that the ellipse of Figure 1 remains unchanged for two-dimensional,
three-dimensional rectangular and annular ducts. Only the values of k	 2 for the modes,
which depend on the duct geometry, will change.
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